Permutation 2-groups I: Structure and Splitness

نویسنده

  • JOSEP ELGUETA
چکیده

By a 2-group we mean a groupoid equipped with a weakened group structure. It is called split when it is equivalent to the semidirect product of a discrete 2-group and a oneobject 2-group. By a permutation 2-group we mean the 2-group Sym(G) of self-equivalences of a groupoid G and natural isomorphisms between them, with the product given by composition of self-equivalences. These generalize the symmetric groups Sn, n ≥ 1, obtained when G is a finite discrete groupoid. After introducing the wreath 2-product Sn ≀ ≀ G of the symmetric group Sn with an arbitrary 2-group G, it is shown that for any (finite type) groupoid G the permutation 2-group Sym(G) is equivalent to a product of wreath 2-products of the form Sn≀≀ Sym(G) for a group G thought of as a one-object groupoid. This is next used to compute the homotopy invariants of Sym(G) which classify it up to equivalence. Using a previously shown splitness criterion for strict 2-groups, it is then proved that Sym(G) can be non-split, and that the step from the trivial groupoid to an arbitrary one-object groupoid is the only source of non-splitness. Various examples of permutation 2-groups are explicitly computed, in particular the permutation 2-group of the underlying groupoid of a (finite type) 2-group. It also follows from well known results about the symmetric groups that the permutation 2-group of the groupoid of all finite sets and bijections between them is equivalent to the direct product 2-group Z2[1]×Z2[0], where Z2[0] and Z2[1] stand for the group Z2 thought of as a discrete and a one-object 2-group, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERMUTATION GROUPS WITH BOUNDED MOVEMENT ATTAINING THE BOUNDS FOR ODD PRIMES

Let G be a transitive permutation group on a set ? and let m be a positive integer. If no element of G moves any subset of ? by more than m points, then |? | [2mp I (p-1)] wherep is the least odd primedividing |G |. When the bound is attained, we show that | ? | = 2 p q ….. q where ? is a non-negative integer with 2 < p, r 1 and q is a prime satisfying p < q < 2p, ? = 0 or 1, I i n....

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

ON THE PERMUTATION MODULES FOR ORTHOGONAL GROUPS O± m(3) ACTING ON NONSINGULAR POINTS OF THEIR STANDARD MODULES

We describe the structure, including composition factors and submodule lattices, of cross-characteristic permutation modules for the natural actions of the orthogonal groups O± m(3) with m ≥ 6 on nonsingular points of their standard modules. These actions together with those studied in [2] are all examples of primitive rank 3 actions of finite classical groups on nonsingular points.

متن کامل

An O'nan-scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2-arc Transitive Graphs

A permutation group is said to be quasiprimitive if each of its nontrivial normal subgroups is transitive. A structure theorem for finite quasiprimitive permutation groups is proved, along the lines of the O'NanScott Theorem for finite primitive permutation groups. It is shown that every finite, non-bipartite, 2-arc transitive graph is a cover of a quasiprimitive 2-arc transitive graph. The str...

متن کامل

TRANSITIVE PERMUTATION GROUPS OF DEGREE p = 2q+l,p AND q BEING PRIME NUMBERS

1. Introduction. Let p be a prime number such that q — l{p — l) is also a prime. Let Q, be the set of symbols 1, • • • , p, and ® be a non-solvable transitive permutation group on 12. Such permutation groups were first considered by Galois in 1832 [I, §327; III, §262]: if the linear fractional group LF 2 (l) over the field of I elements, where I is a prime number not smaller than five, contains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014